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Abstract

Inertial navigation systems (INS) using cold-atom interferometry (CAI) are cur-

rently under development. According to Jekeli and others, these systems will have

error parameters three or four orders of magnitude more accurate than current navi-

gation grade INS. This significant increase in accuracy motivates the need to explore

how these high accuracy inertial navigation systems can be integrated with other

sensors. This paper focuses on methods of integrating cold atom interferometry INS

with conventional navigation grade INS, as well as with GPS. The integration of CAI

INS with conventional INS is done to address possible dynamic limitations of CAI

INS. First, three filter frameworks for integrating cold atom INS with conventional

INS are presented. These filters increase navigation accuracy by calibrating the nav-

igation grade INS in flight. The high accuracy of the cold atom interferometry INS

measurements provides observability of the navigation grade INS errors. The first fil-

ter framework makes corrections at the measurement level, and mechanizes off of the

CAI INS measurements whenever they are available. The second framework makes

corrections at the position level, and always mechanizes off of the navigation grade

INS. The third framework makes corrections at both the position and measurement

level, and always mechanizes off of the navigation grade INS.

This paper then presents the results of a six degree of freedom aircraft simulation

using the proposed approaches for integrating CAI INS with conventional INS. Out-

ages are created in the cold atom interferometry INS that coincide with high dynamic

maneuvers. Simulations were conducted to determine which of the three proposed ap-

proaches to integrating CAI INS with navigation grade INS gives the most accurate

solution. Correcting the INS errors at the measurement level was more accurate for

short outages, and correcting errors at the position level was more accurate for long

outages. Correcting at both the position and measurement level gave similar perfor-
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mance to only correcting at the position level. With outage times as long as one third

of the flight, the second and third frameworks were shown to increase performance by

more than an order of magnitude over a navigation grade INS alone.

Next, a conventional loosely coupled INS - GPS for integrating cold atom in-

terferometry INS with GPS is presented. The cold atom interferometry INS is used

to estimate the navigation solution, with periodic GPS measurements being brought

into a Kalman Filter to estimate the errors in the INS solution. The results of an

aircraft simulation are then presented in order to analyze the effects of various length

GPS outages. The errors using a cold atom interferometry INS are then compared to

the errors of a navigation grade INS integrated in the same way. Monte Carlo analysis

shows that a navigation grade INS - GPS can keep near GPS level accuracy with up

to 100 second outages. The CAI INS - GPS can keep near GPS level accuracy with

outages up to 1000 seconds.
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Integration of Cold

Atom Interferometry INS

With Other Sensors

I. Introduction

1.1 Background

1.1.1 Inertial Navigation. Navigation is the process of accurately determin-

ing position. Inertial navigation is a method of navigation that relies on the funda-

mental laws of motion that Newton first formulated hundreds of years ago. These

laws allow position to be obtained by knowing the acceleration vector of a body at

all times. Accelerometers and gyroscopes are one of the main components of a iner-

tial navigation system. Accelerometers measure specific force. Specific force is the

sum of linear acceleration and gravity. While the acceleration vector alone is enough

information to determine position, instruments are not usually able to measure the

acceleration vector directly. This is because the instruments do not ”know” their own

orientation. Instead, they simply measure accelerations along a single axis which may

have any orientation in space. Gyroscopes are needed to determine this unknown ori-

entation. Once the orientation is known, the accelerations may be correctly resolved

into the desired reference frame. Gyroscopes measure angular rates of a body. A

single integration of these angular rates will give the absolute angle of a body.

Inertial navigation systems consist of three accelerometers and three gyroscopes.

These six instruments provide enough information to know acceleration in all three

dimensions, and therefore position. Errors in an inertial navigation system will cause

the system to drift over time. Current navigation grade INS systems have drifts on

the order of 1 nautical mile/hour [10]. This is considered a highly accurate INS system

and will cost on the order of tens of thousands of dollars.
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1.1.2 Global Position System. The Global Positioning System consists of

a network of satellites that orbit the Earth. These satellites each transmit a unique

code, called a pseudo-range number (PRN), as well as data about the satellites orbit

(ephemeris data). The PRN is a pseudo random code known by both the receiver and

the satellite. By locking onto this code a receiver may determine how long it took

the signal to reach the receiver. This timing information, along with the knowledge

of the speed of light, as well as the satellite location, allows a receiver to calculate its

distance from each of the satellites transmitting a PRN. The receiver is then able to

trilaterate its location on Earth. GPS receivers are vulnerable to jamming.

1.1.3 Cold Atom Interferometry INS. A new type of inertial navigation

system is currently under development which uses a technique called cold atom inter-

ferometry. It has been shown that vast improvements in accuracy over conventional

INS may be achieved using CAI techniques. Performance characteristics given in [5]

show that a CAI INS could theoretically be a meter per hour system. This is a

significant improvement over current nautical mile per hour systems.

1.2 Cold Atom Interferometry INS Physics

The methods of using interferometry in ring laser gyroscopes has been well de-

veloped over the past several decades. These methods led to the first strapdown INS

systems. Ring laser gyroscopes use counter propagating beams of light to produce

interference patterns that provide rotation information [5]. A basic ring laser gy-

roscope is shown in Fig 1.1. The cold atom interferometer (similar conceptually to

the ring laser gyroscope) utilizes counter propagating beams of atoms, as shown in

Fig 1.2. The core physics principle that describes atom interferometry is de Broglie’s

1924 proposition which states that at the quantum level, matter may be considered

to possess wavelike properties [5]. This implies that a beam of atoms will have an

associated phase. When undergoing rotation, there will be an associated phase shift.

The phase shift is analogous to the Sagnac effect of the optical interferometer [5]. The

2



Figure 1.1: Mach-Zehnder Interferometer

phase shift can be described as

∆ϕ =
4πωA

λv
(1.1)

where the enclosed area is A, ω is rotation, λ is the wavelength of the beam, and v is

the velocity. It can be seen from this equation that much greater phase shifts will be

produced using atoms, because in a ring laser gyroscope the equation is divided by

the speed of light, whereas in the cold atom interferometer the velocity is much lower

than the speed of light. In addition, the wavelengths of the light are much higher

than the wavelengths of the atom beam. These two factors show that the cold atom

interferometer will be much more sensitive than a light interferometer. Calculations

anticipate improvements on the order of 6 × 1010. As in the case with a light inter-

ferometer, the phase shifts of the atomic beams will produce an interference pattern

when combined. These interference patterns may be used to back out information on

phase, which in turn can be used to determine angular rotation. Because of the atom’s

particle nature they can also be treated as inertial masses. This allows acceleration

information to be obtained from the flight path of the particles.

3



Figure 1.2: Atoms Injected and Recombined in a Vacuum Chamber [7]

These flight paths are through a finite size vacuum chamber as shown in Fig 1.3.

If the dynamics are high enough, the particle path may be outside the sensor’s ability

to detect when the atomic beams are recombined. This would cause the sensor to

perform poorly or fail under high dynamics. This issue of dynamic performance will

be addressed in the integration of a CAI INS with additional sensors.

1.3 Problem Definition

The main objective of this research is to explore the integration of a CAI INS

with other sensors. Integration of conventional INS with other sensors is a well under-

stood process. Using measurements from CAI sensors, accelerometer and gyroscope

sensor models such as those given in [13] may be used to estimate and correct INS

errors. The vast improvements in accuracy of a CAI INS motivates the need to re-

evaluate how INS is integrated with other sensors such as GPS and multiple INS. The

methods of integrating these systems as well as the performances of these systems

will be significantly different in light of the highly accurate CAI INS in development.

The goal of integrating a CAI INS with an additional INS is two-fold. The

first purpose is to improve navigation accuracy. This benefit would come from the

high accuracy of a CAI INS. The second purpose is to improve dynamic performance.

4



Figure 1.3: Atoms Injected and Recombined in a Vacuum Chamber (after [3])

The need for the conventional INS arises from the concerns of CAI INS dynamic

performance. A conventional INS performs well under high dynamics. In integrating

these sensors together, the goal would be to create a highly accurate system that also

performs well in high dynamic environments.

The goal of integrating a CAI INS with GPS is to improve system resiliency.

GPS is a vulnerable system prone to interference. By integrating a GPS with a CAI

INS, the risk of having a denied GPS signal would be mitigated. As with any INS-

GPS system, under a GPS outage the navigation solution will begin to drift, due to

the INS accumulating errors over time. The desired effect of integrating CAI INS with

GPS would be to create a system whose drift is significantly slower than conventional

systems during GPS outages.

1.4 Related Research

1.4.1 Integration of multiple INS. The fusion of multiple Inertial Navigation

Systems is well documented. The most common use of multiple INS is in redundancy

and fault detection. Bird and McMillan describes how multiple INS can be used

to enable the application of sensitive fault detection, isolation, and reconfiguration

techniques [4]. Common acronyms that describe these systems are RIMU and SRIMU

which stands for Redundant or Skewed Redundant Inertial Measurement Unit. These

methods often involve mapping multiple IMU observations into a virtual IMU frame,
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as described by Allerton [1]. The IMU used in these integrations are of the same

performance grade. The data fusion seeks to take advantage of information obtained

from IMUs in optimal configurations.

As described above, the main purpose of virtual IMU integration is not to

improve accuracy but to facilitate detection of faulty observations. Bancroft [2] derives

several methods to fuse multiple sensor readings into these virtual IMU frames as

well as other approaches, including centralized and federated filters. Waegli discusses

the possibility to reduce and to estimate the noise levels of multiple Micro-Electro-

Mechanical Systems IMU systems [12]. These methods do not have any observability

on sensor errors such as biases or scale factors - they can only reduce white noise.

The only improvement that comes from any of the previously described methods arises

from averaging white noise or detecting faults. This research differs in the purpose of

improving navigation accuracy by estimating and removing INS errors.

1.4.2 Integration of CAI INS with Conventional INS. Jekeli explores the

integration of a CAI INS with a conventional INS in [5]. In his paper he develops

models for the acceleration and rotation measurements of a CAI INS. These measure-

ments are shown to differ from conventional INS measurements, although he suggests

that with a few reasonable assumptions they can be treated the same way. This allows

him to suggest the theoretical performance of a CAI INS using common INS error

parameters such as a bias and white noise. Performance parameters he presents are

used in this research to create CAI INS grade measurements.

Jekeli explores the integration of a CAI INS with a low measurement duty cycle.

The CAI INS considered requires a significant amount of a time to prepare the atomic

cloud before it is sent through the vacuum chamber. This causes the sensor to have a

sampling rate on the order of several Hertz, as opposed to the several hundred Hertz

of a conventional IMU. This causes the bandwidth of the sensor to be greatly reduced.

During the cooling period the sensor will not ”see” the full dynamics of the platform

on which it is mounted. He suggests two ways to address this issue. The first would
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be to integrate the CAI INS with a conventional INS. He shows that conventional

INS 50 times more accurate than current systems would be needed to give a final

solution on the order of five meters per hour. The second way he suggests addressing

this issue is to interleave the duty cycles of multiple CAI INS. This would increase

the bandwidth of the CAI INS and allow it to capture the platform’s full dynamics.

This thesis differs in the assumptions regarding the dynamic limitations of the

CAI INS. While the primary limitation in dynamic performance that Jekeli considers

comes from a low measurement duty cycle, this research considers absolute limits to

dynamic performance. This means that when dynamics exceed a certain threshold,

the sensor fails. One example of an absolute limit is a failure caused by the beam

of atoms being outside the view of the sensor. Other possible failures caused by

exceeding an absolute dynamic level could exist such as a 2π phase ambiguity when

the atomic beams are recombined.

1.5 Potential Applications

Integration of CAI INS systems with other sensors could greatly improve nav-

igation accuracy in a wide array of applications. Increases in accuracy of three to

four orders of magnitude could completely redefine how inertial navigation systems

are used. Dependence on GPS for missions less than one hour could possibly be

eliminated. On longer missions, GPS outages could become much less of a concern.

Because CAI INS could have limitations operating under high dynamics, the use of a

CAI INS alone on these platforms may not perform well. Therefore, the fusion of CAI

INS with other sensors would be especially beneficial to air vehicles operating under

high dynamics. The CAI would greatly increase accuracy during low dynamics while

current systems would provide the needed availability during high dynamic situations.

1.6 Methodology

The first step in the integration of cold atom interferometry INS with other

sensors was to develop the integration frameworks. These frameworks described how
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the measurements from each sensor would be used and combined. Next, software

in MATLAB was written which implemented these frameworks. Because this sys-

tem is first being tested on a theoretical level, a simulation environment was needed.

The first step in the simulation environment was creating a realistic flight trajectory.

INS measurements which result in this flight trajectory were then created. These

perfect measurements were then corrupted according to the models of INS of various

performance levels. The software in MATLAB was then given the corrupted measure-

ments, and the results of the filter were compared to the true trajectory to determine

performance.

1.7 Thesis Overview

Chapter 2 provides supporting mathematical background for the theory sup-

porting INS mechanization, INS error modeling, and Kalman Filtering. Chapter

3 develops the frameworks for integrating CAI INS measurements with conventional

INS and GPS. It then presents the Kalman Filter dynamics, measurements, and noise

models. The overall software structure is given as well as the development of key per-

formance parameters. Chapter 4 presents test results. Lastly, Chapter 5 presents

conclusions and suggests future research.
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II. Mathematical Background

2.1 Overview

This section presents the necessary background information required to under-

stand the research being presented. It covers reference frames, Kalman filtering, and

INS mechanization equations.

2.2 Reference Frames

Navigation information such as position and velocity are not complete without

the use of a reference frame. Depending on the problem, different reference frames

may be more mathematically convenient than others. All reference frames used in

this research are Cartesian coordinate right handed, orthonormal, axis sets.

2.2.1 The Inertial Frame. The inertial frame, also known as the i-frame, is

a non rotating frame which can be defined by the fixed stars. Its origin is the center

of the Earth and its vertical axis is aligned with the North Pole. Because the North

Pole moves, an absolute location is defined by the WGS-84 system.

2.2.2 The Earth Frame. The Earth frame, also known as the e-frame, is a

rotating frame with its origin at the center of the Earth. The z axis is aligned with the

North Pole as defined by the WGS-84 system. Its x-axis goes through the intersection

of the Equator and the Greenwich meridian. The frame rotates at the rotation rate

of the Earth, Ω

2.2.3 The Navigation Frame. The navigation frame, also known as the n-

frame, has its origin at a point in the vicinity of the surface of the Earth. The vertical

axis always points in the direction of the local vertical. The x and y axes of the system

point in the North and East directions on the Earth respectively. The origin of this

frame always coincides with the location of the navigation system. Rotation of the

Earth and movement of the navigation system will cause this frame to rotate at the

rate ωen (known as the transport rate).
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2.2.4 The Body Frame. The body frame is a navigation frame with origin

fixed to the navigation system. The axis set is aligned with the roll, pitch, and yaw

of the aircraft. The x axis is out of the noise of the aircraft, the y axis is out of

the right wing, and the z axis is out of the bottom of the aircraft, perpendicular to

the first two. This is the frame in which all measurements from accelerometers and

gyroscopes are initially resolved. Measurements in this frame must be converted into

frames useful for navigation, such as the navigation frame. The angles between the

body frame and the navigation frame provide the information needed to make these

conversions.

2.3 Inertial Navigation System Mechanization

This section closely follows [10]. Inertial system mechanization depends on the

reference frame being utilized. The frame which will be used for this analysis will be

the local level frame, also known as the navigation frame. The acceleration in the

navigation frame, with respect to the earth, is

v̇n
e = fn − (2ωn

ie + ωn
en)× vn

e + gn
l (2.1)

This equation can be thought of as the sum of three forces. The force vector fn includes

the forces measured by the accelerometers, expressed in the navigation frame. The

second term, (2ωn
ie+ωn

en)×vn
e , is an apparent force caused by navigating in a rotating

reference frame, known as a Coriolis acceleration. It is the cross product of the object

angular rate with its velocity. This angular rate is a sum of the turn rate of the Earth,

ωn
ie and the turn rate of the local geographic frame, also known as the transport rate,

ωn
en. These two vectors are functions of the latitude and longitude on Earth, L and

λ, as well as velocity, v, i.e.,

ωn
ie =

[
ΩcosL 0 −ΩsinL

]T
(2.2)
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ωn
en =

[
λ̇cosL −L̇ −λ̇sinL

]T
(2.3)

Eq 2.3 can be rewritten as a function of the navigation frame velocity as

ωn
en =

[
ve

R0+h
−vn
R0+h

−vetanL
R0+h

]T
(2.4)

where R0 is the radius of the Earth, ve and vn are the North and East velocities, h is

height above the Earth, and L is latitude. The final term of Eq 2.1 is the local gravity

vector, gn
l . This vector is the sum of the mass attraction vector g and the centripetal

acceleration caused by the Earth’s rotation, i.e.,

gn
l = g − ωie ×

[
ωie ×R0

]
(2.5)

which may be rewritten as

gn
l = g − Ω(R0 + h)

2


sin2L

0

(1 + cos2L)

 (2.6)

The final navigation equations in component form are then

v̇N = fN − 2ΩvEsinL+
(vNvD − v2EtanL)

(R0 + h)
+ ξg (2.7)

v̇E = fE − 2Ω(vNsinL+ vDcosL) +
vE

(R0 + h)
(vD + vN tanL)− ηg (2.8)

v̇D = fD − 2ΩvecosL− (v2E + v2n)

(R0 + h)
+ g (2.9)

where fN , fE, and fD are measured specific forces in the North, East, and down

directions. ξ and η are components of gravity in the North and East directions.

Latitude, longitude, and height rates are given by

L̇ =
vN

(R0 + h)
(2.10)
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λ̇ =
vEsecL

(R0 + h)
(2.11)

ḣ = −vD (2.12)

In Eq 2.1 the forces were expressed in the navigation frame. The readings from an

accelerometer, however, are not given in the navigation frame. An accelerometer

outputs accelerations in a body frame. Eq 2.1 must therefore be rewritten as

v̇n
e = Cn

b f
b −

[
2ωn

ie + ωn
en

]
× vn

e + gn
l (2.13)

where the direction cosine matrix ( DCM), given as Cn
b , is used to resolve the measured

body forces into the navigation frame. It is described by the differential equation

Ċn
b = Cn

bΩ
b
nb (2.14)

The matrix Ωb
nb is the skew symmetric form of the vector ωb

nb, which is the angular

rate of change of the body with respect to the navigation frame. This angular rate

of change is the sum of the measured angular rates with the Earth’s angular rate as

well as the angular rate of the navigation frame.

ωb
nb = ωb

ib −Cb
n[ω

n
ie + ωn

en] (2.15)

2.4 Strapdown System Error Equations

The development of error equations is necessary for the design of filters. To

optimally combine data from multiple INS systems or a INS/GPS system, the filter

must be told what the expected error is for all time. The error equations provide this

information to the filter. They are developed here using perturbation analysis [5].

2.4.1 Attitude Errors. The true orientation of a body in a strapdown system

is represented by Cn
b . In any real system, however, the orientation will contain errors.

The computer only has access to this estimated state, denoted C̃n
b . The matrix B in
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Eq 2.16 relates the true and estimated direction cosine matrices.

C̃n
b = BCn

b (2.16)

If the misalignment angles are small the matrix B may be represented as the skew

symmetric matrix

B = [I−Ψ] (2.17)

I is a 3 x 3 identity matrix andΨ is given by Eq 2.18 where γ, α, and β are the attitude

errors. In a space stabilized system these errors would by the physical misalignments

of the instruments with respect to their given axes.

Ψ =


0 −δγ δβ

δγ 0 −δα

−δβ δα 0

 (2.18)

Substituting Eq 2.17 into Eq 2.16 gives

C̃n
n = [I−Ψ]Cn

b (2.19)

Solving for Ψ and differentiating this equation gives

Ψ̇ = − ˙̃C
n

bC
nT
b − C̃n

b Ċ
nT
b (2.20)

By combining Eq 2.14 and 2.15 the matrix Cn
b can be shown to propagate according

to

Ċn
b = C̃n

bΩ
b
ib −Ωn

inC
n
b (2.21)

The estimated Cn
b matrix, C̃n

b propagates the same way using the estimated absolute

body rates Ω̃b
ib and the estimated navigation frame rate Ω̃n

in

˙̃C = C̃n
b Ω̃

b
ib − Ω̃n

inC̃
n
b (2.22)
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Plugging Eq 2.21 and 2.22 into Eq 2.20 gives

Ψ̇ = −C̃n
b Ω̃

b
ibC

nT
b + Ω̃n

inC̃
n
bC

nT
b + C̃n

bΩ
b
ibC

nT
b − C̃n

bC
nT
b Ω̃n

in (2.23)

Simplifying yields

Ψ̇ = −C̃n
b [Ω̃

b
ib −Ωb

ib]C
nT
b + Ω̃n

inC̃
n
bC

nT
b − C̃n

bC
nT
b Ω̃n

in (2.24)

Substituting Eq 2.19 into Eq 2.24 gives

Ψ̇ = −[I−Ψ]Cn
b [Ω̃

b
ib −Ωb

ib]C
nT
b + Ω̃n

in[I−Ψ]Cn
bC

nT
b − [I−Ψ]Cn

bC
nT
b Ωn

in (2.25)

Expressing the differences between estimated values and true values as ∂Ωin and ∂Ωib

and ignoring error product terms gives

Ψ̇ ≈ ΨΩn
in −Ωn

inΨ+ ∂Ωn
in −Cn

b ∂Ω
b
ibC

nT
b (2.26)

This can be expressed in vector form as

ψ̇ ≈ −ωn
in × ψ + ∂ωn

in −Cn
b ∂ω

b
ib (2.27)

2.4.2 Velocity and Position Errors. As shown previously, the acceleration,

or time derivative of velocity, is given by

v̇n
e = Cn

b f
b − (2ωn

ie + ωn
en)× vn

e + gn
l (2.28)

which may be rewritten in terms of the estimated quantities, which are the quantities

a computer would know. This gives

˙̃vn
e = C̃n

b f̃
b − (2ω̃n

ie + ω̃n
en)× ṽn

e + g̃n
l (2.29)
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Taking the difference of the true and estimated velocity equations yields

∂v̇ = C̃n
b f̃

b −Cn
b f

b − (2ω̃n
ie + ω̃n

en)× ṽ + (2ωn
ie + ωn

en)× v + g̃l − gl (2.30)

Denoting estimated minus true values as ∂ and substituting C̃n
b = [I−Ψ]Cn

b as well

as ignoring the products of error terms gives

∂v̇ ≈ −ΨCn
b f

b +Cn
b ∂f

b − (2ωn
ie + ωn

en)× ∂v − (2∂ωn
ie + ∂ωn

en)× v − ∂g (2.31)

Several simplifying assumptions can be made. If gravity is assumed to be known and

Coriolis terms ignored this can further be reduced to

∂v̇ ≈ [fn×]ψ +Cn
b ∂f

b (2.32)

Position errors may be represented as

∂ṗ = ∂v (2.33)

When broken into component form these 9 equations are referred to as the Pinson

Error Model [10]. The matrix form of this model may be found in Chapter 3.

2.5 Accelerometer and Gyroscope Models

The modeling of INS accelerometers and gyroscopes is needed for the integration

of two INS systems. These models are used in the Kalman filters which optimally

combine information from both system dynamics and measurements. Models given

below are based on [13].

2.5.1 Accelerometer Model. The accelerometer measurement is modeled as

äx = äxtrue + bax + (1 + SFax)äxtrue + ASFax |äxtrue |+NSFax ä
2
xtrue

+ wax (2.34)
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äy = äytrue + bay + (1 + SFay)äytrue + ASFay |äytrue|+NSFay ä
2
ytrue + way (2.35)

äz = äztrue + baz + (1 + SFaz)äztrue + ASFaz |äztrue |+NSFaz ä
2
ztrue + waz (2.36)

äx, äy, and äz are the accelerometer measured values. These measurements consist of

the true values, äxtrue , äytrue , and äztrue , as well as several errors. These erors, described

below, consist of a time correlated bias ba, a scale factor SFa, an asymmetric scale

factor ASFa, a non linear scale factor NSFa, and white noise wa.

2.5.2 Gyroscope Model. The gyroscope model is the same as the accelerom-

eter model. The gyroscope error is modeled as

θ̇x = θ̈xtrue + bθx + (1 + SFθx)θ̈xtrue + ASFθx|θ̈xtrue |+NSFθx θ̈
2
xtrue

+ wθx (2.37)

θ̇y = θ̈ytrue + bθy + (1 + SFθy)θ̈ytrue + ASFθy |θ̈ytrue |+NSFθy θ̈
2
ytrue + wθy (2.38)

θ̇z = θ̈ztrue + bθz + (1 + SFθz)θ̈ztrue + ASFθz |θ̈ztrue |+NSFθz θ̈
2
ztrue + wθz (2.39)

θ̈x, θ̈y, and θ̈z are the accelerometer measured values. These measurements consist

of the true values, θ̈xtrue , θ̈ytrue , and θ̈ztrue , as well as several errors. These errors,

described below, consist of a time correlated bias bθ, a scale factor SFθ, an asymmetric

scale factor ASFθ, a non linear scale factor NSFθ, and white noise wθ. The time

correlated biases ba and bθ are modeled as first order Gauss-Markov processes defined

by a time constant τ and standard deviation σbias [6]. They are both described by

the statistics

E[b] = 0 (2.40)

E[b2] = σ2
bias (2.41)
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Table 2.1: Conventional and CAI INS parameter values [5]

Conventional Accelerometer White Noise Variance (5× 10−5m/s2/
√
Hz)2

Conventional Gyroscope White Noise Variance (6× 10−2deg/h/
√
Hz)2

CAI Accelerometer White Noise Variance (3× 10−8m/s2/
√
Hz)2

CAI Gyroscope White Noise Variance (1.2× 10−4deg/h/
√
Hz)2

Conventional Accelerometer Bias Variance (2× 10−4m/s2)2

Conventional Gyroscope Bias Variance (3× 10−3deg/h)2

Conventional Accelerometer Scale Factors (1 σ value) 300ppm
Conventional Gyroscope Scale Factors (1 σ value) 300ppm

The time correlated bias has a time constant τ which describes how long it takes

to decorrelate with itself. The relationship between the desired bias sigma and the

driving white noise strength q is

q =
2σ2

τ
(2.42)

The additive white noises wa and wg are assumed to be normally distributed with

zero mean and covariance given by

E[w2
a] = σ2

a (2.43)

E[w2
θ ] = σ2

θ (2.44)

The linear scale factor errors, SFa and SFθ, are errors that grow linearly with the

sensor input. The non linear scale factor, NSFa and NSFθ, are errors that grow with

the square of the input. The asymmetric scale factor, ASFa, and ASFθ change the

scale factor depending on whether the input is positive or negative. All scale factor

errors are modeled as zero-mean Gaussian constants with variances given in Table

2.1. A depiction of these errors is given in Fig 2.1 [13].

2.6 Kalman filtering

2.6.1 Linear Kalman filtering. Kalman filtering is used to estimate the

solution to a linear stochastic differential equation. It is a recursive, optimal data

processing algorithm [6]. Being recursive, it only relies only on the previous estimate
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Figure 2.1: Scale Factor Examples for INS Instrument Error Models

to create a new estimate. This makes the algorithm practical for real world use.

The algorithm is also statistically optimal, meaning if all assumptions are met, the

algorithm gives the best possible estimate of all states. A key assumption of Kalman

filtering is that there exists an accurate and linear mathematical model of the true

system. Because few things in the real world are linear, an accurate linear model is

rarely possible. An additional key assumption is that that the random processes being

described are Gaussian. In light of the violations of these assumptions, an optimal

estimate is difficult to actually obtain. Many methods of modifying and tuning a

Kalman filter exist in order to achieve the best solution.

2.6.1.1 State Model Equations. The description given below of the

Kalman filter equations follows [8], which is based on [6,11]. The form of the system

model must satisfy the linear equation

ẋ(t) = F(t)x(t) +B(t)u(t) +G(t)w(t) (2.45)

where x(t) is the n-dimensional system state vector, F(t) is the n-by-n system dynam-

ics matrix, B(t) is the n-by-r control input matrix, u(t) is the r-dimensional control

input matrix, G(t) is the n-by-s noise input matrix, and w(t) is the s-dimensional

dynamics driving noise vector. The noise vector w(t) is a random process which is
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white Gaussian and described by

E{w(t)} = 0 (2.46)

E{w(t)wT (t′)} = Q(t)δ(t− t′) (2.47)

The solution to Eq 2.45, found in [6] is given by

x(ti+1) = Φ(ti+1, ti)x(ti) +

[∫ ti+1

ti

Φ(ti+1, τ)G(τ)δβ(τ)

]
(2.48)

The vector β is a Brownian motion process with dispersion Q and Φ(ti+1, ti) is the

state transition matrix from time ti to ti+1. In discrete time the Φ matrix is given by

Φ(ti+1, ti) = Φ(∆t) = eF∆t (2.49)

The discrete time form of Eq 2.45 is given by

x(ti+1) = Φ(ti+1, ti)x(ti) +wd(ti) (2.50)

wd is a random process given by

wd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)δβ(τ) (2.51)

with statistics

E{wd(ti)} = 0 (2.52)

E{wd(ti)w
T
d (ti)} = Qd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)Q(τ)GT (τ)ΦT (ti+1, τ)δτ (2.53)

E{wd(ti)w
T
d (tj)} = 0, ti ̸= tj (2.54)

2.6.1.2 Measurement Model Equations. Kalman filtering allows mea-

surements with a degree of uncertainty to be incorporated into the optimal state

estimate. The measurements must be expressed as a linear combination of the sys-
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tem states. The measurement model is

z(ti) = H(ti)x(ti) + v(ti) (2.55)

TheHmatrix describes the mapping from the system states to the measurement value.

The random variable v(ti) is the measurement noise, modeled as white Gaussian noise

with statistics

E{v(ti)} = 0 (2.56)

E{v(ti)vT (tj)} =

 R(ti) for ti = tj

0 for ti ̸= tj

 . (2.57)

2.6.1.3 Kalman filter Algorithm. The Kalman filter is a recursive

algorithm. There are two main steps to the algorithm - propagate and update. The

propagate step moves the current state estimate forward in time based off of the

system model. The update step takes into account the new information made available

by a measurement and creates a new optimal state estimate with this information.

The system and measurement models are stochastic, and therefore all system states

are random processes. Because these random processes are assumed to be Gaussian,

only two moments of the random processes must be calculated, the mean and the

covariance. The propagation of these two moments, found in [6], with the input term

ignored, are given by

x̂(t−i ) = Φ(ti, ti−1)x̂(t
+
i−1) (2.58)

P(t−i ) = Φ(ti, ti−1)P(t+i−1)Φ
T (ti, ti−1) +Gd(ti−1)Qd(ti−1)G

T
d (ti−1) (2.59)

When an update is incorporated into the system, it must be optimally mixed with

the current state estimate. This is done by weighting the measurement residual with

the Kalman gain, K. This gain, found in [6], is given by

K(ti) = P(t−i )H
T (ti)[H(ti)P(t−i )H

T (ti) +R(ti)]
−1 (2.60)
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The measurement residual is simply the difference between the expected measurement

and the actual measurement. The residual is given by [6]

r(ti) = zi −H(ti)x̂(t
+
i ) (2.61)

To complete the update process the mean of the state estimate is calculated by adding

the weighted residual to the previous state. The new covariance is calculated in the

same manner, with the H matrix included to take into account which states are

mapped to the measurement output [6].

x̂(t+i ) = x̂(t−i ) +K(ti)r(ti) (2.62)

P(t+i ) = P(t−i )−K(ti)H(ti)P(t−i ) (2.63)

2.6.2 Non Linear Kalman filtering. The requirement of a linear mathe-

matical model to achieve an optimal state estimate is a strict requirement that is

often not possible in real world situations. Extended Kalman filtering is a variation

of Kalman filtering that attempts to lessen the difficulty of meeting this requirement.

An extended Kalman filter linearises a non-linear mathematical model at each step

in time. This allows a non linear system model to be used while at the same time

allowing the use of the linear Kalman filter equations. The non linear mathematical

model of a system is given by

x̂ = f [x(t), u(t), t] +Gw(t) (2.64)

The non-linear measurement model is given by

z(ti) = h[x(ti), ti] + v(ti) (2.65)

Perturbation techniques are used to allow the Kalman filtering equations to be used

with non-linear system models. The system state x(t) is defined as being the sum of
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a nominal state x̄(t) plus an error state δx̂(t)

x̂ = x̄(t) + δx̂(t) (2.66)

The error state is what the Kalman filter will now operate on. After linearising a

non-linear model this error state may be better estimated as a Gaussian random

variable and solved for using the linear Kalman filter equations. The measurement

model can be expressed in a similar manner. The measurement will be the sum of an

expected measurement at the nominal, h[x̄(t−i+1), ti+1] plus a small perturbation due

to linearising the model, as well as noise.

z(ti+1) = h[x̄(t−i+1), ti+1] +H(ti+1)δx(ti+1) + v(ti+1) (2.67)

The matrix H is calculated by

H(t) =
∂h

∂x
|x̂(t),t =


∂h1

∂x1
. . . ∂h1

∂xn

...
. . .

...

∂hn

∂x1
. . . ∂hn

∂xn

 (2.68)

The previously presented Kalman filter equations are then used to propagate and

update the error states. At each time step the new total state must be calculated by

adding the nominal state to the error state as follows

x̄(t+i+1) = x̄(t−i+1) + δx̂(t+i+1) (2.69)

Because the error state is defined as the perturbation about the nominal, when a new

nominal is calculated the error covariance is reset to 0.

2.6.3 Upper Diagonal Kalman filtering. The Upper Diagonal Filter (UD)

Filter, is a computationally efficient form of a square root filter [6]. These filters are

used when numerical precision becomes a problem. These numerical precision prob-
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lems are usually caused by very accurate measurements or large ratios between the

largest and smallest eigenvalues of P. Square root filters are algebraically equivalent

forms of the Kalman filter with better numerical performance. The UD filter starts

by factoring the covariance matrix P into upper diagonal form

P(t−i ) = U(t−i )D(t−i )U
T (t−i ) (2.70)

where U is upper triangular with 1’s along the diagonal and D is diagonal. The states

are propagated in the same way as the standard Kalman filter,

x̂(t−i+1) = Φ(ti+1, ti)x̂(t
+
i ) (2.71)

To propagate the covariance start with

P(t−i+1) = Φ(ti+1, ti)P
+
i Φ

T (ti+1, ti) +GdQdG
T
d (2.72)

where

P−
i+1 = U−

i+1D
−
i+1(U

−
i+1)

T (2.73)

An algorithm to solve for the P+
i matrix can be found in [6]. This algorithm also

calculates the updated state, x(t+i )
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III. Integration Methods for Cold Atom Interferometry INS

3.1 Overview

This section details the design of several different integration methods for CAI

INS. Three methods for integrating CAI with conventional INS are presented as well

as an integration method for GPS. The creation of the simulation environment as well

as the derivation of key system parameter values is also covered.

3.2 Truth Model and Generation of Measurements

A set of δV and δθ measurements were created from real flight path data for

use in this simulation. The process of going from the real flight path to these δV

and δθ measurements used a simple model and therefore the trajectory created by

mechanizing these measurements is slightly different than the true data.

3.2.1 True δV and δθ measurement generation. The method used for gen-

erating true δV and δθ measurements started with a set of real flight data. This data

consisted of Earth centered Earth fixed position. The first step was converting the

ECEF data into latitudes, longitudes, and altitudes. This data was then differentiated

to obtain latitude, longitude, and altitude rates. Using the radius of the Earth, these

rates were then converted into NED velocities. The equivalent Earth radii, found in

[10], are given by

Rm =
a(1− e2)

(1− e2sin2ϕ)3/2

Rp =
a

(1− e2sin2ϕ)1/2
(3.1)

where a is the Earth’s radius, e is the Earth’s eccentricity, and ϕ is latitude. The

NED velocities are given by

VE = (Rp + h)cosϕλ̇

VN = (Rm + h)ϕ̇ (3.2)
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where ϕ̇ and λ̇ are the latitude and longitude rates obtained by differentiating latitude

and longitude, and h is height above the Earth. Yaw and pitch were then obtained

using the NED velocity vectors, under the assumption that the vehicle is aligned with

the velocity vectors.

Y aw = tan−1

(
VN
VE

)
Vhoriz =

√
V 2
N + V 2

E

Pitch = −tan−1

(
VD
Vhoriz

)
(3.3)

Obtaining roll is not as straightforward. There is no lateral component of specific

force in the body frame. The method used was to first find the angle between the

acceleration and the velocity vectors. This angle α was obtained by

α = tan−1 |a× v|
a · v

(3.4)

Perpendicular horizontal acceleration, defined as the acceleration perpendicular to the

velocity vector in the horizontal plane, was then obtained by finding the perpendicular

component of the horizontal acceleration magnitude projected onto the horizontal

velocity vector.

ahoriz =
√
a2N + a2E

aperp = ahorizcosα (3.5)

This projection is shown in Fig 3.1. The final step is to determine the angle between

this horizontal acceleration and the gravity vector given by

Roll = tan−1aperp
g

(3.6)

The yaw pitch and roll are first used to create a Cn
b matrix for each point in time. The

yaw, pitch, and roll were then differentiated to give yaw, pitch, and roll rates. These
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Figure 3.1: Determining Roll Angle From Velocity and Acceleration for Creating
δV and δθ Measurements

body rates must then be related to the gimbal rates ωx, ωy, and ωz. The relation

between these rates is given by
ωx

ωy

ωz

 =


ϕ̇

0

0

+ C3


0

θ̇

0

+ C3C2


0

0

Ψ̇

 (3.7)

The Earth rate and transport rate were not taken into account in these conversions.

This causes the trajectory generated using this method to differ from the original data.

This was not an issue because the truth data used in this simulation was created by

running these uncorrupted measurements through the mechanization equations. The

purpose of using the original data was to get realistic measurements, not to precisely

recreate the trajectory. The ∆V measurements were then created by multiplying by

sampling time, subtracting gravity, and converting into body frame coordinates.

∆V = Cn
b


AN · dt

AE · dt

(AD − g) · dt

 (3.8)
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The ∆θ measurements were obtained by multiplying the body rates by sampling time.

∆θ = dt ·


ωx

ωy

ωz

 (3.9)

3.2.2 Corrupted δV and δθ measurement generation. The δV and δθ mea-

surements were then corrupted according to two different models. The first model

was for a CAI INS. This creates a trajectory which drifts slightly from the true model.

The second model was for a navigation grade INS. This trajectory drifts a great deal

more than the high accuracy INS. The true, CAI INS, and navigation grade INS

trajectories are shown in Fig 3.3 through Fig 3.5. Running the true ∆V and ∆θ

measurements through the mechanization equations results in the truth data shown

in Fig 3.3-3.5. Note that altitude is always the same because of external barometer

aiding.

3.3 Framework 1 Filter Design

The first framework the for dual INS integration will correct errors at the mea-

surement level. Any time the CAI INS is available the mechanization will be done

using these highly accurate measurements. Mechanization is the process of generating

position, velocity, and attitude, from the INS ∆V and ∆θ measurements. Simulta-

neously, measurements from both the CAI INS and the navigation grade INS will be

brought into a Kalman Filter. This filter will estimate the errors in the navigation

grade measurement. Whenever an outage occurs the mechanization must be done

using the navigation grade measurements. Because the Kalman filter has estimates

of the navigation grade INS errors, the measurements may be corrected before they

are input into the mechanization equations. In this way, the mechanization is done

using CAI INS measurements when available, and using corrected navigation grade

INS measurements when CAI INS measurements are not available. Fig 3.2 shows the

filter structure. The Kalman filter will estimate a solution to the equation
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Figure 3.2: Dual Inertial Filter Framework 1 Block Diagram

ẋ = Fx(t) +Gw(t) (3.10)

Within the dynamics matrix, F, the sensor errors are propagated into navigation

solution errors. The matrix w is the noise that is entering the states of the system.

The states of the implemented Kalman filter are given in Table 3.1.
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Table 3.1: Dual INS Filter States

Filter States Description
ba X,Y, and Z Accelerometer

Bias

bθ X,Y, and Z Gyro Bias

SFa X,Y, and Z Accelerometer
Linear Scale Factor

SFθ X,Y, and Z Gyro Linear
Scale Factor

NSFa X,Y, and Z Accelerometer
Non Linear Scale Factor

NSFθ X,Y, and Z Gyro Non Lin-
ear Scale Factor

ASFa X,Y, and Z Accelerometer
Asymmetric Scale Factor

ASFθ X,Y, and Z Gyro Asymmet-
ric Scale Factor

∆Vtrue X,Y, and Z True X-
Accelerometer ∆V

∆θtrue X,Y, and Z True X-Gyro ∆θ
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Figure 3.3: Comparison Of True and Corrupted Flight Trajectories For A CAI
Grade And Navigation Grade INS System Sample Trajectory

Figure 3.4: Comparison Of True and Corrupted Altitude vs. Time For A CAI
Grade And Navigation Grade INS System Sample Trajectory

Figure 3.5: Comparison Of CAI Grade And Navigation Grade East and North
Error vs. Time For Sample Trajectory
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The F matrix is given in Eq 3.11. The B matrix describes the dynamics of

the time-correlated biases as first order Gauss Markov processes with time constants

equal to τ .

F =

B 0

0 0


30x30

(3.11)

B =



−1/τax 0 0 · · ·

0 −1/τay 0 · · ·
...

...
. . .

...

0 · · · −1/τgy 0

0 · · · 0 −1/τgz


6x6

(3.12)

The noise vector w contains 12 noise sources which account for the driving noises for

the accelerometer and gyroscope biases as well as the tuning noises for the ∆Vtrue

and ∆θtrue states. The function of these tuning noise states will be described in the

measurement model section. The noise vector is given by

w =



wbias
accel

wbias
gyro

wtuning
accel

wtuning
gyro


12x1

(3.13)

Where

wbias
accel = x,y, and z accel time-correlated bias driving noise

wbias
gyro = x,y, and z gyro time-correlated bias driving noise

wtuning
accel = Accel True ∆V Tuning Noise

wtuning
gyro = Gyro True ∆θ Tuning Noise
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The measurement model is given by the following equations, each describing

three channels.

∆Vcai = ∆Vtrue +wacai

∆θcai = ∆θtrue +wgcai (3.14)

∆Vnav = ∆Vtrue(I+ SF+NSF+ASF) + (3.15)

banav +wanav

∆θnav = ∆θtrue(I+ SF+NSF+ASF) +

bgnav +wgnav (3.16)

It can be seen from the equations that the ∆Vtrue and ∆θtrue states are set equal to

the CAI INS measurements. The white noise of the CAI INS adds a small amount

of uncertainty to these measurements. The navigation grade INS measurements are

then set equal to these same ∆Vtrue and ∆θtrue states with the addition of the error

terms. Large tuning noises are then added to the ∆Vtrue and ∆θtrue states as described

previously. This makes the filter strongly trust the CAI INS measurement coming in

at each time epoch. In this way the filter is able to accurately estimate the navigation

grade INS errors. There are twelve measurements coming into the Kalman Filter in
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all - 2 separate INS systems each with 6 channels.

z =



∆Vcaix

∆Vcaiy

∆Vcaiz

∆θcaix

∆θcaiy

∆θcaiz

∆Vnavx

∆Vnavy

∆Vnavz

∆θnavx

∆θnavy

∆θnavz



(3.17)

The above equations lead to the following H matrix.

H =

0 0 0 0 I

I SF NSF ASF I


12x30

(3.18)

where

SF =



∆Vx 0 0 0 0 0

0 ∆Vy 0 0 0 0

0 0 ∆Vz 0 0 0

0 0 0 ∆θx 0 0

0 0 0 0 ∆θy 0

0 0 0 0 0 ∆θz


(3.19)
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Figure 3.6: Dual Inertial Filter Framework 2 Block Diagram

NSF =



∆V 2
x 0 0 0 0 0

0 ∆V 2
y 0 0 0 0

0 0 ∆V 2
z 0 0 0

0 0 0 ∆θ2x 0 0

0 0 0 0 ∆θ2y 0

0 0 0 0 0 ∆θ2z


(3.20)

ASF =



|∆Vx| 0 0 0 0 0

0 |∆Vy| 0 0 0 0

0 0 |∆Vz| 0 0 0

0 0 0 |∆θx| 0 0

0 0 0 0 |∆θy| 0

0 0 0 0 0 |∆θz|


(3.21)

Using the F, G, and H matrices, a Kalman filter can be implemented. The particular

type of Kalman filter implemented is a UD filter [6]. This was needed because of the

large differences in eigenvalues in the w matrix, which arise from large tuning noises

for the true states and small driving bias noises.

3.4 Dual INS Filter Framework Two

The second proposed framework for integrating the CAI measurements is given

in Fig 3.6. A Kalman filter is used to combine measurements from the CAI inertial
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with the conventional inertial. This framework starts with the traditional Pinson error

model and augments the filter with the states from Framework 1. The mechanization

will be done using the navigation grade INS, with the CAI INS providing periodic

measurements to correct the solution. This approach was chosen due to the known

performance of a navigation grade INS over a wide range of system dynamics - there

will never be an outage of the navigation grade measurements. A concern with this

approach was the use of the navigation measurements for mechanization at all times.

The white noise errors of the navigation grade INS are not estimated and corrected

like the bias and scale factor errors. Because of this, these errors will lead to what

is commonly referred to as velocity and angular random walk errors. The previous

framework minimized these errors by mechanizing off of the CAI-INS measurements

whenever they were available. Because of the use of the Pinson error model in this

framework, one set of measurements must be used. This is because the Pinson error

model is estimating errors in a single INS, and switching back and forth between INS

as in Framework 1 would mean the errors were from two different INS. To examine

the effect of the velocity and angular random walk errors, a set of measurements

were corrupted with only white noise. The results of this sample trajectory is shown

in Fig 3.7. It can be seen in the figure that the error due to white noise only in

the navigation grade system is on the order of tens of meters. Considering the total

system error is on the order of a nautical mile, this framework should still correct the

majority of the error. For comparison, Fig 3.8 shows the error due to white noise only

for a tactical grade system. These errors are on the order of thousands of meters.

Again, these errors would not be corrected, so using at least a navigation grade INS

for Framework 2 is a minimum requirement.
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Figure 3.7: Comparison of Navigation Grade and CAI Grade INS System Showing
North Error Due to Measurement White Noise Only on a Sample Trajectory

Figure 3.8: Comparison of Navigation Grade and CAI Grade INS System Showing
East Error Due to Measurement White Noise Only On A Sample Trajectory
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The states of the implemented Kalman filter are given in Table 3.2. The F

matrix is given in Eq 3.22. The Pinson error model is a matrix of equations that

models the dynamics of errors in a strapdown INS [6].

F =


Pinson A C D E 0

0 B 0 0 0 0

0 0 0 0 0 0


41x41

(3.22)

P =



0 0 − vN
R2

Earth

1
REarth

0

vEtan(L)
REarthcos(L)

0 −vE
R2

Earth
cos(L)

0 1
REarthcos(L)

0 0 −k1 0 0

−vE(2Ωcos(L) + vE
REarthcos2(L)

) 0
v2
Etan(L)−vNvD

R2
Earth

vD
REarth

−2(Ωsin(L) +
vEtan(L)
REarth

2Ω(vN cos(L)− vDsin(L)) + vNvE
REarthcos2(L)

0 −vE
vN tan(L)+vD

R2
Earth

2Ωsin(L) +
vEtan(L)
REarth

vN tan(L)+vD
REarth

2ΩvEsin(L) 0
v2
N+v2

E

R2
Earth

+ k2 −2 vN
REarth

−2(Ωcos(L)− vE
REarth

−Ωsin(L) 0 − v2
E

R2
Earth

0 1
REarth

0 0 vN
R2

Earth

−1
REarth

0

−Ωcos(L)− vE
REarthcos2(L)

0
vEtan(L)

R2
Earth

0
−tan(L)
REarth

0 0 0 0 0

0 0 k3 0 0

...

(3.23)

...

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 k1 0

vN
REarth

0 −fNED(3) fNED(2) 0 0

2Ωcos(L) + vE
REarth

fNED(3) 0 −fNED(1) 0 0

0 −fNED(2) fNED(1) 0 −k2 1

0 0 −Ωsin(L)− vEtan(L)
REarth

vN
REarth

0 0

0 Ωsin(L) +
vEtan(L)
REarth

0 Ωcos(L) + vE
REarth

0 0

0 −vN
REarth

−Ωcos(L)− vE
REarth

0 0 0

0 0 0 0 −1
BaroT

0

0 0 0 0 −k3 0



(3.24)

The A matrix relates how the bias errors flow back into the velocity and attitude error

states. Note that a direction cosine matrix is needed because bias errors are in the
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Table 3.2: Dual INS Filter States

Filter States Description
δL Error in Latitude

δλ Error in Longitude

δh Error in Height

δVN Error in North Velocity

δVE Error in East Velocity

δVD Error in Down Velocity

δα North Tilt Error

δβ East Tilt Error

δγ Down Tilt Error

δha Aiding Altitude Error

δâ Vertical Acceleration Error

ba X,Y, and Z Accelerometer
Bias

bθ X,Y, and Z Gyro Bias

SFa X,Y, and Z Accelerometer
Linear Scale Factor

SFθ X,Y, and Z Gyro Linear
Scale Factor

NSFa X,Y, and Z Accelerometer
Non Linear Scale Factor

NSFθ X,Y, and Z Gyro Non Lin-
ear Scale Factor

ASFa X,Y, and Z Accelerometer
Asymmetric Scale Factor

ASFθ X,Y, and Z Gyro Asymmet-
ric Scale Factor

∆Vtrue X,Y, and Z True X-
Accelerometer ∆V

∆θtrue X,Y, and Z True X-Gyro ∆θ
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body frame, not the navigation frame. The 1
dt

term is needed because the bias states

are an estimate of the biases in the ∆V and ∆θ measurements. These measurements

are just changes in velocity and angular rate (not changes in velocity and angular rate

over time) and must be divided by time to be made into average accelerations before

they can be integrated into velocity and attitude. The A matrix is given by

A =
1

dt
·


0 0

Cb
n 0

0 Cb
n

0 0


11x6

(3.25)

The Bmatrix describes the dynamics of the time-correlated biases as first order Gauss

Markov processes with time constants equal to τ . The B matrix is given by

B =



−1/τax 0 0 · · ·

0 −1/τay 0 · · ·
...

...
. . .

...

0 · · · −1/τgy 0

0 · · · 0 −1/τgz


6x6

(3.26)

The C, D, and E matrices describe how the linear scale factor, non linear scale factor,

and asymmetric scale factor errors relate to the velocity and attitude states. Again,

these terms must be divided by time so the changes in velocity and attitude become

average accelerations over time. The elements of the direction cosine matrix which

converts from the body frame to the navigation frame must be included as well. The

C, D, and E matrices are given by

C =
1

dt
·


03x3 03x3

C13x3 03x3

03x3 C23x3

02x2 02x3


11x6

(3.27)
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C1 =


Cb

n(1, 1)∆Vx Cb
n(1, 2)∆Vy Cb

n(1, 3)∆Vz

Cb
n(2, 1)∆Vx Cb

n(2, 2)∆Vy Cb
n(2, 3)∆Vz

Cb
n(3, 1)∆Vx Cb

n(3, 2)∆Vy Cb
n(3, 3)∆Vz

 (3.28)

C2 =


Cb

n(1, 1)∆θx Cb
n(1, 2)∆θy Cb

n(1, 3)∆θz

Cb
n(2, 1)∆θx Cb

n(2, 2)∆θy Cb
n(2, 3)∆θz

Cb
n(3, 1)∆θx Cb

n(3, 2)∆θy Cb
n(3, 3)∆θz

 (3.29)

D =
1

dt
·


03x3 03x3

D13x3 03x3

03x3 D23x3

02x2 02x3


11x6

(3.30)

D1 =


Cb

n(1, 1)∆V
2
x Cb

n(1, 2)∆V
2
y Cb

n(1, 3)∆V
2
z

Cb
n(2, 1)∆V

2
x Cb

n(2, 2)∆V
2
y Cb

n(2, 3)∆V
2
z

Cb
n(3, 1)∆V

2
x Cb

n(3, 2)∆V
2
y Cb

n(3, 3)∆V
2
z

 (3.31)

D2 =


Cb

n(1, 1)∆θ
2
n Cb

n(1, 2)∆θ
2
e Cb

n(1, 3)∆θ
2
d

Cb
n(2, 1)∆θ

2
n Cb

n(2, 2)∆θ
2
e Cb

n(2, 3)∆θ
2
d

Cb
n(3, 1)∆θ

2
n Cb

n(3, 2)∆θ
2
e Cb

n(3, 3)∆θ
2
d

 (3.32)

E =
1

dt
·


03x3 03x3

E13x3 03x3

03x3 E23x3

02x2 02x3


11x6

(3.33)

E1 =


Cb

n(1, 1)|∆Vx| Cb
n(1, 2)|∆Vy| Cb

n(1, 3)|∆Vz|

Cb
n(2, 1)|∆Vx| Cb

n(2, 2)|∆Vy| Cb
n(2, 3)|∆Vz|

Cb
n(3, 1)|∆Vx| Cb

n(3, 2)|∆Vy| Cb
n(3, 3)|∆Vz|

 (3.34)
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E2 =


Cb

n(1, 1)|∆θn| Cb
n(1, 2)|∆θe| Cb

n(1, 3)|∆θd|

Cb
n(2, 1)|∆θn| Cb

n(2, 2)|∆θe| Cb
n(2, 3)|∆θd|

Cb
n(3, 1)|∆θn| Cb

n(3, 2)|∆θe| Cb
n(3, 3)|∆θd|

 (3.35)

The noise vector w contains 18 noise sources which account for what is commonly

referred to as velocity or angular random walk as well as the driving noises for the

accelerometer and gyroscope biases. They also include the tuning noises for the ∆Vtrue

and ∆θtrue states. The noise vector is given by

w =



wvrw
accel

warw
gyro

wbias
accel

wbias
gyro

wtuning
accel

wtuning
gyro


18x1

(3.36)

Where

wvrw
accel = x,y, and z velocity random walk noise

warw
gyro = x,y, and z angular random walk noise

wbias
accel = x,y, and z accel time-correlated bias driving noise

wbias
gyro = x,y, and z gyro time-correlated bias driving noise

wtuning
accel = Accel True ∆V Tuning Noise

wtuning
gyro = Gyro True ∆θ Tuning Noise

The G matrix is needed to relate noises in the body frame to noises in the navigation

frame. The only noises that must be converted are the velocity and angular random
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Table 3.3: Conventional and CAI INS Parameter Values [5]

Conventional Accelerometer White Noise Variance (5× 10−5m/s2/
√
Hz)2

Conventional Gyroscope White Noise Variance (6× 10−2deg/h/
√
Hz)2

CAI Accelerometer White Noise Variance (3× 10−8m/s2/
√
Hz)2

CAI Gyroscope White Noise Variance (1.2× 10−4deg/h/
√
Hz)2

Conventional Accelerometer Bias Variance (2× 10−4m/s2)2

Conventional Gyroscope Bias Variance (3× 10−3deg/h)2

Conventional Accelerometer Scale Factors (1 σ value) 300ppm
Conventional Gyroscope Scale Factors (1 σ value) 300ppm

walk noises. The G matrix is given by

G =


A 0 0

0 I 0

0 0 0

0 0 I


41x18

(3.37)

A =


0 0

Cb
n 0

0 Cb
n

0 0


11x6

(3.38)

The measurement model and measurement matrix z are the same as Framework 1.

The H matrix is different, but the sub matrices SF, NSF, and ASF are the same as

Framework 1.

H =

0 0 0 0 0 I

0 I SF NSF ASF I


12x41

(3.39)

Using the F, G, and H matrices, a Kalman filter can be implemented. The navigation

grade INS inputs drive the mechanization equations. The mechanization equations are

used to provide nominal values for calculating the time varying F and H matrices.

The error state solutions from the Kalman Filter are added to the mechanization

equation outputs to provide a corrected navigation solution. The parameters used for

the white noise, biases, and scale factors are given in Table 3.3.
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Figure 3.9: Framework 1 Dual INS Simulation Flow Chart

3.5 Algorithm Implementation for Dual INS Framework

The algorithms for implementing the Dual-INS simulation are presented in this

section. A large part of the simulation consists of creating the measurements needed

by the Kalman Filter. This process in done in two steps. A MATLAB m-file creates

the true measurements from ECEF data as explained in the beginning of Chapter

3. Second, a MATLAB m-file corrupts these measurements according to the two

separate models explained in Chapter 2. Finally, the simulation is run in a final

MATLAB m-file. The Framework 1 flowchart for this simulation is shown in Fig 3.9.

The Framework 2 flowchart is shown in Fig 3.10.

3.6 Converting from IMU specifications to code parameters

IMU’s are described by specifications such as velocity random walk. These

specifications can be used to derive the parameters needed when simulating an IMU

in software. The software in this simulation consists of measurements given in the
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Figure 3.10: Framework 2 Dual INS Simulation Flow Chart

form of ∆V ’s. These are not the same as sampled accelerations. Data sheets for IMU

systems often give parameters as sampled acceleration. The process of converting

between these types of measurements is given in this section. The velocity random

walk specification often given in IMU data sheets can be used to calculate the white

noise strength of accelerometer ∆V measurements. The white noise process of an

accelerometer sensor is described by

E[w∆V x(tj)w∆V x(tk)] = σ2
w∆V x

δjk (3.40)

The following equation relates VRW to the variance of the white noise samples.

(V RW )2∆t = σ2
w∆V x

(3.41)
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The measurement bias is described as a first order Gauss Markov process which is

expressed by the following differential equation.

ḃ∆V x = − 1

Taccel
b∆V x + w∆V biasx (3.42)

The noise term w∆V biasx is defined by

E[w∆V biasx(t)w∆V biasx(t+ τ)] = Qb∆V δ(τ) (3.43)

In code, this bias will be created by driving white noise through a system. The

strength of this driving white noise must be calculated from the given bias 1 sigma

value often found in specifications. The following equation relates the bias variance

given in specifications to driving white noise strength.

Qb∆V
=

2(∆t)σ2
accel

Taccel
(3.44)

3.7 GPS-CAI Integration

The integration of GPS with CAI INS was done using a Kalman Filter. The

approach chosen was that of a classic loosely coupled INS-GPS like that found in [9].

The integration framework can be seen in Fig 3.11. The states of the filter are given in

Table 4.6. The F matrix was the Pinson error model augmented with accelerometer

and gyroscope bias states.

F =


Pinson 0 0

0 ba 0

0 0 bg


18x18

(3.45)

The noise vector w contains 12 noise sources which account for what is commonly

referred to as velocity or angular random walk as well as the driving noises for the
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Figure 3.11: GPS-CAI INS Integration Framework

accelerometer and gyroscope biases. The noise vector is given by

w =



wvrw
accel

warw
gyro

wbias
accel

wbias
gyro


12x1

(3.46)

Where

wvrw
accel = x,y, and z velocity random walk noise

warw
gyro = x,y, and z angular random walk noise

wbias
accel = x,y, and z accel time-correlated bias driving noise

wbias
gyro = x,y, and z gyro time-correlated bias driving noise

The G matrix is given by

G =

A 0

0 I


17x12

(3.47)
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Table 3.4: GPS-CAI INS Filter States

Filter States Description
δL Error in Latitude

δλ Error in Longitude

δh Error in Height

δVN Error in North Velocity

δVE Error in East Velocity

δVD Error in Down Velocity

δα North Tilt Error

δβ East Tilt Error

δγ Down Tilt Error

δha Aiding Altitude Error

δâ Vertical Acceleration Error

ba X,Y, and Z Accelerometer Bias

bθ X,Y, and Z Gyro Bias

A =


0 0

Cb
n 0

0 Cb
n

0 0


11x6

(3.48)

The measurement model is given by the following equations

LatitudeGPS = LatitudeINS + δLatitude (3.49)

LongitudeGPS = LongitudeINS + δLatitude (3.50)

(3.51)

The GPS position is converted to a latitude and longitude and then used as the

measurement in the Kalman Filter.

z =

 LatitudeGPS − LatitudeINS

LongitudeGPS − LongitudeINS

 (3.52)
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The above equations lead to the following H matrix.

H =

1 01x16 0

0 1 01x16


2x18

(3.53)

3.8 Algorithm Implementation for GPS-CAI INS Framework

The GPS measurements are created by running the uncorrupted ∆V and ∆θ

measurements through the INS mechanization equations. The resulting true latitudes,

longitudes, and heights are saved for use in generating the measurements. This is done

in the same MATLAB m-file that corrupts the measurements for use in the dual-INS

framework. The flowchart for this simulation is shown in Fig 3.12
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Figure 3.12: GPS-CAI INS Simulation Flow Chart
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IV. Results

4.1 Test Environments

4.1.1 Dual-INS Test Environments. The Dual-INS frameworks were simu-

lated in various test environments. As explained in Chapter 2, CAI sensors may not

operate in high dynamic environments. Because the CAI INS is still under develop-

ment, two key testing parameters were created to cover a range of possible performance

levels. The first is the CAI white noise errors. As explained in the CAI INS error

model, the errors are modeled by a single additive white noise. This white noise is

varied in the simulation to simulate the various levels that could be encountered in

a CAI system. The second parameter is called the g cut-off, which is the maximum

acceleration possible before creating a CAI outage. The algorithm calculates the ac-

celeration as each measurement comes in. If it is above a certain threshold, a CAI

outage is created. Table 4.1 shows what percent of the flight the CAI INS failed.

Fig 4.1-4.3 shows CAI measurement availability for a 3, 5, and 7 g-cutoff. By varying

these two parameters, a tradespace can be analyzed. True values used for error calcu-

lations were created by passing the uncorrupted ∆V and ∆θ measurements through

the mechanization equations. Note that the CAI-grade and nav-grade measurements

were created by corrupting these true measurements.

An additional method for creating CAI INS outages was tested. This method

used periodic outages of the CAI INS instead of g-induced outages. This allows

for more general analysis to be conducted on the filter framework. The g-induced

outages are more realistic, yet also very specific to the created flight trajectory. The

observable errors in the navigation grade INS are hidden beneath white noise. These

white noise errors are reduced with the square root of time as CAI INS measurements

are taken. Because of this, CAI INS measurements cannot be taken at long intervals.

If a measurement was taken every 5 seconds the bias would be indistinguishable from

Table 4.1: Dual INS CAI Outage Times for Tested G Cutoffs
G-cutoff 3 g’s 5 g’s 7 g’s
Percent of flight with CAI outage 27% 15% 7%

50



Figure 4.1: Dual INS Example of a 3 G-Dependent CAI Measurement Availability

the white noise. Fig 4.4 shows the filter’s bias estimate using CAI INS measurements

every 5 seconds as opposed to every time step. It can be seen the filter does not

track the bias error accurately, which would lead to poor navigation performance.

The periodic outages are instead modeled as square waves with various periods as

well as duty cycles. For example, an outage may occur every 10 seconds and last for

3 seconds. Fig 4.5 shows an example of test case with a measurement period of 10

minutes and duty cycles of 50, 70, and 90 percent. This allows the time of continuous

measurement needed to calibrate the navigation grade INS.

4.1.2 GPS-CAI INS Test Environments. The GPS-CAI INS test environ-

ment was designed to simulate GPS outages. A GPS fix gives absolute location, so

the performance of the system while continually receiving GPS updates is not of im-

portance. Instead, the performance of the system subjected to various length GPS

outages will be analyzed. The simulation for the GPS-CAI integration varied one

parameter. This parameter will be called measurement frequency and is simply the

number of GPS measurements per unit of time.
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Figure 4.2: Dual INS Example of 5 G-Dependent CAI Measurement Availability

The accelerometer measurements that were used in the simulation are given in

Fig 4.6-4.8. These plots are useful for understanding the vehicle dynamics. The Y

and Z accelerometers measured greater variations in acceleration over time than the X

accelerometer. The X-accelerometer was aligned along the length of the aircraft and

would be especially sensitive to such maneuvers as speeding up and slowing down.

These types of maneuvers are not as frequent in the flight trajectory.
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Figure 4.3: Dual INS Example of a 7 G-Dependent CAI Measurement Availability

Figure 4.4: Dual INS Insufficient Measurement Rate Example Showing Failed Bias
Estimate
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Figure 4.5: Periodic CAI INS Measurement Availability, Period=10 Minutes, Duty
Cycles=50,70,90 Percent

Figure 4.6: Dual INS Sample Trajectory X-Accelerometer Measured Acceleration
vs. Time
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Figure 4.7: Dual INS Sample Trajectory Y-Accelerometer Measured Acceleration
vs. Time

Figure 4.8: Dual INS Sample Trajectory Z-Accelerometer Measured Acceleration
vs. Time
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4.2 Dual INS Filter Performance

The following sections present the results of the different dual INS filters imple-

mented. The performance of the different approaches are presented first, followed by

a comparison to the other filter frameworks. Framework 2 had superior performance

when subjected to realistic outages, and therefore has the most complete analysis, and

will be presented first. The reasons for Framework 2’s superior performance under

realistic outages will explained when comparing the filter frameworks.

4.2.1 Framework 2 Results. Framework 2 always mechanized off the navi-

gation grade measurements. The errors in the navigation grade measurements were

continuously estimated with a Kalman Filter and propagated though the Pinson er-

ror model to be corrected at the position domain level (as opposed to correcting the

measurements as Framework 1 did). The use of the Pinson error model will allow

measurements coming into the filter to make corrections to the systems attitude, ve-

locity, and position. A drawback of Framework 2 is that the more accurate CAI INS

measurements are never used for mechanization - they are only used to correct the

navigation grade INS errors. This means that any errors the filter is not estimating,

such as the navigation grade white noise, will not be corrected. This was not a large

concern due to the low contribution of the velocity and angular random walk errors

to the overall system error. Fig 4.9 shows a sample run of the error of a navigation

grade system due to white noise only. It can be seen the error is on the order of 50

meters per hour, while the total system error is on the order of a nautical mile per

hour. This indicates that mechanizing off of the navigation grade measurements is an

acceptable approach.

Values for the white noise level of a CAI system are given in Table 4.2. In this

simulation, these values are referred to as the nominal values. These values, along with

a g-cutoff of 3 g’s, will be used to demonstrate the success of Framework 2. Fig 4.10

and 4.11 show the east and north errors of the corrected vs. uncorrected solutions

for a sample run. It can be seen from the plots that the errors are dramatically
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Figure 4.9: Sample Run Showing East Error Due to VRW and ARW Only for a
Navigation Grade System

reduced when aided with the CAI system. The errors of both the aided and unaided

solutions are seen to be driven primarily by the Shuler cycle. In the aided solution,

small jumps may be seen in the error that coincide with the return of CAI availability.

An expanded view of these jumps can be seen in Fig 4.12. Such jumps are desired

since they indicate that the filter is able to use new measurements to correct past

errors, rather than just ensuring the current solution is more accurate from that time

forward. This may seem normal when thinking about the problem in the same way

as GPS aiding, but it must be pointed out that the measurements are not in the

position domain. When an INS system receives a GPS measurement, it is receiving a

position domain estimate, so the position solution is corrected. When the dual-INS

system receives a measurement after an outage, it is only getting a more accurate

acceleration back. Previous errors have already been integrated twice into position

errors. The correction in the position domain shows the filter’s use of the correlation

between various states, demonstrating the usefulness of the chosen approach to dual

INS integration.
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Table 4.2: Conventional and CAI INS Parameter Values [5]

Conventional Accelerometer White Noise Variance (5× 10−5m/s2/
√
Hz)2

Conventional Gyroscope White Noise Variance (6× 10−2deg/h/
√
Hz)2

CAI Accelerometer White Noise Variance (3× 10−8m/s2/
√
Hz)2

CAI Gyroscope White Noise Variance (1.2× 10−4deg/h/
√
Hz)2

Conventional Accelerometer Bias Variance (2× 10−4m/s2)2

Conventional Gyroscope Bias Variance (3× 10−3deg/h)2

Conventional Accelerometer Scale Factors (1 σ value) 300ppm
Conventional Gyroscope Scale Factors (1 σ value) 300ppm

Figure 4.10: Dual INS Framework 1 North Corrected vs. Uncorrected Error For
Single Run, 3 G Cutoff, Nominal Case

4.2.1.1 Monte Carlo Results. Using the nominal parameter values

given in the previous section, a Monte Carlo analysis was done. The same simulation

was run fifty times. Fig 4.13-4.14 show all fifty runs on a single plot along with the

filter predicted standard deviation. The true ∆V and ∆θ values were corrupted

differently for all 50 runs. Fig 4.15-4.16 shows the mean error over the fifty runs, as

well as the filter predicted and actual standard deviations. The errors appear to be

converging on zero-mean as Monte Carlo runs increase. With 50 runs they still drift

slowly over time. More Monte Carlo runs would be needed to confirm that the errors

are indeed zero mean. The North and East channel predicted and actual standard

deviations match up accurately.
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Figure 4.11: Dual INS Framework 1 East Corrected vs. Uncorrected Error For
Single Run, 3 G Cutoff, Nominal Case

For comparison, Fig 4.17 and 4.18 show the uncorrected navigation grade INS

mean and standard deviation. As Monte Carlo runs are increased the position errors

appear to be converging on zero mean. Again, more Monte Carlo runs would be

needed to confirm this. As expected the standard deviations are much higher in the

uncorrected case.
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Figure 4.12: Dual INS Framework 1 East Corrected Solution Example of Improve-
ment Jumps Coinciding with Returning CAI Measurements, 3 G Cutoff, Nominal
Case

Figure 4.13: Dual INS Framework 1 Monte Carlo East Error VS Time for All Runs,
3 G Cutoff, Nominal Case
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Figure 4.14: Dual INS Framework 1 Monte Carlo Uncorrected North Error VS
Time for All Runs, 3 G Cutoff, Nominal Case

Figure 4.15: Dual INS Framework 1 Monte Carlo Filter Corrected East Error vs.
Time, 3 G Cutoff, Nominal Case
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Figure 4.16: Dual INS Framework 1 Monte Carlo Filter Corrected North Error vs.
Time, 3 G Cutoff, Nominal Case

Figure 4.17: Dual INS Framework 1 Monte Carlo Uncorrected East Error VS Time,
3 G Cutoff, Nominal Case
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Figure 4.18: Dual INS Framework 1 Monte Carlo Uncorrected North Error VS
Time, 3 G Cutoff, Nominal Case
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The RMS errors in both the north and east directions were calculated over the

fifty runs giving RMS value at each point in time. A RMS value was also calculated

over time characterizing the north and east error with a single RMS value. Fig 4.19

show the north and east RMS errors vs. time for the corrected and uncorrected so-

lutions. Fig 4.20 shows the north and east RMS errors vs. time for the corrected vs.

basic integration. These plots show consistently growing error, which is to be expected

for a RMS value. The RMS values are useful for characterizing the performance of

the system over time. The jumps in the position solution when obtaining CAI mea-

surements after an outage are more prominent in these plots, further demonstrating

the successful performance of the filter.

4.2.1.2 Individual Error Plots. 24 separate error sources are being

corrected in the filter. For ease of presentation, only a few will be shown. All 24 of

these errors are propagated though the Pinson Error Model to predict the error in

the navigation solution. Fig 4.21 shows the filter’s estimate of the navigation grade

x-axis accelerometer bias. It can easily be seen where CAI outages are taking place

during the flight. The periods of growing covariances in Fig 4.21 indicate an outage

is taking place. Because of the filter’s knowledge of the time constant of the bias, the

estimate of the bias remains accurate for the duration of the outages. Fig 4.22 shows

the down gyroscope scale factor. It can be seen that outages do not appear to affect

the estimate of this scale factor. This is a desirable filter characteristic. Once the

filter correctly tracks a scale factor error, this error will be corrected for the remainder

of the flight. In this simulation the scale factors are modeled as constants, which is

why the filter keeps an accurate estimate even during outages. Realistically, the scale

factors could vary with time, but for a short flight this is a reasonable assumption.

Fig 4.23 shows the asymmetric north gyro scale factor errors. Again, this estimate

is not affected by outages. It can be seen that the filter does a good job estimating

these values. There are small errors throughout which will continually be integrated

twice into position errors. The filter was not able to track all errors, however. Not
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Figure 4.19: Dual INS Framework 1 Monte Carlo Corrected and Uncorrected East
and North RMS Error VS Time, 3 G Cutoff, Nominal Case

all modes of the filter were excited enough to gain observability on all filter states.

Errors such as nonlinear scale factors would gain observability better in a higher-

g turn. Observability on the scale factor errors is related to the variation in the

accelerometer measurements. This is why the down scale factors tend to be tracked

more accurately than the north or east scale factors. The variation in acceleration in

the z accelerometer is greater than the x or y accelerometers, as shown in Section 4.1.

A benefit of the chosen approach is the performance while coasting through outages.

Even with no measurements available the filter is still able to estimate the errors fairly

well.

The results are now summarized in Table 4.3. As stated previously, the first

metric of success is the percent improvement over the uncorrected solution. The

second metric of success is the percent improvement over a basic integration that

simply uses CAI measurements when they are available, and performs no optimal

estimation. It can be seen in from the results that the filter makes large improvements

with respect to both measures of success. The corrected horizontal error is on the
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Figure 4.20: Dual INS Framework 1 Monte Carlo Corrected and Simplistic Inte-
gration East and North RMS Error VS Time, 3 G Cutoff, Nominal Case

order of 100 meters. This was done using 3-g induced outages, which made the CAI

INS unavailable 27 percent of the time. With full measurement availability the CAI

INS is predicted to be a 5 meter per hour system. 100 meter per hour performance

appears reasonable with outages of the system for almost one third of the flight. The

test case of 3-g induced outages was considered a worst case performance, giving

results still significantly better than current navigation grade systems.
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Figure 4.21: Dual INS Framework 1 Filter X-Accelerometer Bias Estimate Example
for Single Run, 3 G Cutoff, Nominal Case

Figure 4.22: Dual INS Framework 1 Filter Down Gyroscope SF Estimate Example
for Single Run, 3 G Cutoff, Nominal Case
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Figure 4.23: Dual INS Framework 1 Filter North Gyroscope Assymetric SF Esti-
mate Example for Single Run, 3 G Cutoff, Nominal Case
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Table 4.3: Dual INS Framework 1 RMS Errors and Percent Improvements, 3 G
Cutoff, Nominal Case

East RMS
Error (m)

North
RMS Error
(m)

Horizontal
RMS Error
(m)

Uncorrected Error
(Metric 1)

1215 1428 1871

Basic Integration Er-
ror (Metric 2)

231 173 289

Corrected Error 92 meters 97 134
Improvement over un-
corrected (% improve-
ment)

1320% 1472% 1396%

Improvement over ba-
sic (% improvement)

251 % 178% 216 %

Table 4.4: Dual INS Framework 1 Tradespace Monte Carlo DRMS Errors VS CAI
White Noise and G-Cutoff

Nominal Value × 3-g 5-g 7-g
1 135 72 33
100 140 81 32
500 132 103 77
1000 165 134 93

4.2.1.3 Trade-space Results. A large number of simulations were con-

ducted to capture the possible range of performances for a CAI-INS integrated with

a conventional INS. These results are presented in the form of DRMS error. The

tradespace consists of two parameters. The first is a multiplier of the nominal white

noise value. This is to simulate changing the accuracy of the CAI system. The second

parameter is the g-cutoff of the CAI system. Table 4.4 shows the DRMS errors across

the tradespace. It was discovered in the simulations that the white noise of the CAI

system must be increased greatly before it starts having a noticeable effect on the

filter results. Decreasing the white noise levels below the nominal case was found to

yield negligible improvement for the filter as well.
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4.2.2 Dual INS Framework 1 Results. Framework 1 switched between us-

ing CAI INS measurements and corrected navigation grade measurements in the

mechanization equations. A Kalman Filter continuously estimated the error of the

navigation grade measurements in order to correct them in the event of an outage.

Framework 1 was simulated for various test cases. Monte Carlo results of these sim-

ulations are shown in Table 4.5. A metric of performance was needed to evaluate

the performance of each framework. The chosen metric of performance is the percent

improvement over what is called the dual INS basic integration. The dual INS ba-

sic integration is a simple integration of the two INS that does not use any optimal

estimation. It simply uses the CAI INS measurements when they are available, and

uses the navigation grade INS measurements when the CAI INS is not available. It

is similar to Framework 1, except in the event of an outage the navigation grade INS

measurements are not corrected with the estimated errors of the navigation grade

system. Each framework will be compared to the performance of this basic integra-

tion. The actual numerical performance of the filter framework is not the primary

concern of this analysis. A simple model of the CAI INS was used and the extent

of the dynamic performance limitations being addressed will not be fully understood

until these systems, still under development, are fully tested. The research is primar-

ily concerned with the performance of the different integration approaches relative to

each other, as well as trends in the data seen under the various test cases.

The first test case is the no-outage test case, shown in the first line of Table 4.5.

This test case measures how well the framework performs when the CAI INS mea-

surements are always available. For Framework 1 this test case is trivial, as the CAI

INS is used the entire flight. This test case is useful for later comparing to Framework

2.

The next test cases were the periodic outage test cases. These test cases used

square waves with a period of 600 seconds and varying duty cycles, where a 1 cor-

responds to measurement availability and a -1 corresponds to a CAI INS outage. In

this way the amount of time each system was subjected to CAI outages was easily
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Figure 4.24: Dual INS Periodic Outages with Measurement Period of 600 Seconds
and Duty Cycle of 80%

controlled and the performance with these outage times evaluated. The duty cycles

chosen were based off the outage times they create. A duty cycle of 97 percent cre-

ates 20 second outages while a duty cycle of 80 percent creates 2 minute outages. An

example of these periodic outages can be seen in Fig 4.24, and results are given in

Table 4.5.

The next test cases were the g-induced outages. These outages are created when

the aircraft acceleration exceeds a set threshold. These outages are more realistic than

the periodic outages, as this is how an outage would actually be created, as explained

in the Background section. A drawback is these outages are very specific to the flight

trajectory created for this simulation. An example of a g-induced outage can be seen

in Fig 4.25.

It can be seen from the results that Framework 1 had the greatest factor of

improvement over the basic integration when there was short CAI INS outages, such

as the 5g induced outages. This shows the usefulness of estimating the navigation

grade INS errors. Even short outages will cause errors that oscillate and grow ac-

cording to the dynamics of the Schuler cycle. With longer outages the corrected

solution also begins to have noticeable Schuler cycle oscillations, decreasing the factor
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Figure 4.25: Dual INS G-Induced Outages with G Threshold of 3G’s

Table 4.5: Dual INS Framework 1 MC DRMS Error Under Various Test Cases
Test Case Basic

Integration
Framework 1 Factor of Im-

provement
No Outages 2 m 2 m 0 x
97% Duty
Cycle

77 m 12 m 6.4 x

80% Duty
Cycle

483 m 124 m 3.9 x

3g Induced
Outages

718 m 205 m 3.5 x

5g Induced
Outages

540 m 133 m 4.1 x

of improvement. The test case with the longest outages was the 3-g induced outage

case. This test case had outages for 27 percent of the time. The error from the basic

integration, which still uses CAI INS whenever it can, grows to 718 meters. That

error is decreased by more than 500 meters by estimating the navigation grade errors

during outages. Note that altitude errors are omitted because they are bounded by

the barometer aiding that occurs in the mechanization equations and therefore have

a negligible effect on overall system error.
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Figure 4.26: Dual INS Comparison of Framework 1 and 2 Errors with No CAI INS
Outages (Framework 1 and Basic Integration Error are Identical)

4.2.3 Dual INS Framework 1 and 2 Comparisons. The performance of

Framework 2 is compared to the basic integration error as well as the Framework 1

errors for all of the previously described test cases. The Monte Carlo results of these

simulations are in Table 4.6. Fig 4.26 shows the results of the two filter frameworks

when there are no CAI INS outages. As expected, Framework 1 performs better than

Framework 2, and is exactly the same as the basic integration. Framework 1 has no

velocity and angular random walk errors when there are no CAI INS outages, because

the navigation grade INS is never used. Framework 2 always mechanizes off of the CAI

INS so VRW and ARW errors accumulate for the duration of the flight. Fig 4.27 shows

a comparison of the Framework 1 and Framework 2 performances for a periodic outage

with a duty cycle of 97 percent. It can be seen that Framework 1 performs better than

Framework 2 in this case. The outage times with a 97 percent duty cycle are very

short - around 20 seconds. With these small outages correcting the measurements at

the measurement level gives better results. Fig 4.28 shows the results of the 80 percent

duty cycle case. In this case Framework 2 performs better. This is likely due to the

benefits of using the Pinson error model. A duty cycle of 80 percent corresponds

to outage times of two minutes. When outage times are this long there is much to
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Figure 4.27: Dual INS Periodic Outages with Measurement Period of 600 Seconds
and Duty Cycle of 97%

be gained by using the Pinson error model. When CAI INS measurements return,

the Kalman Filter is able to make corrections to the position, velocity, and attitude

states. The bias changes enough over the two minute outage that when the filter gets a

measurement back it is able to adjust these states accordingly to reflect what the true

bias actually was. This is possible because of the cross correlation between the bias

states and the Pinson error states. An additional test case was run to find out at what

point Framework 1 and 2 have the same performance for the periodic outages. This

was determined to occur when the duty cycle of the outages is 93% which corresponds

to outage times of about 40 seconds. A comparison of the filter performances when

using the g-induced outages is given in Fig 4.29. It can be seen from the data that

Framework 2 performs better in the g-induced outages. This is because of the long

outages in these cases. The performance in these cases is important, because these

types of outages are what a CAI INS with dynamic limitations could encounter. Again

it can be seen that Framework 2 performs much better than Framework 1.

When comparing the first two filter frameworks it can be seen there is a tradeoff

between outage times and which framework performs better. When the outage times

are very short, the first framework has better performance. There could be several
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Figure 4.28: Dual INS Periodic Outages with Measurement Period of 600 Seconds
and Duty Cycle of 80%

Table 4.6: Dual INS Framework 1 and 2 MC DRMS Errors Under Various Test
Cases

Test Case Basic Framework 1 Framework 2
Integration

No Outages 2 m 2 m 16 m
97% Duty Cycle 77 m 12 m 22 m
93% Duty Cycle 179 m 26 m 27 m
80% Duty Cycle 483 m 124 m 72 m
3g Induced Outages 718 m 205 m 111 m
5g Induced Outages 540 m 133 m 69 m

reasons for this improved performance. It is possible that when the outage times

are short the dominant error comes from velocity and angular random walk errors.

These errors are more prominent in Framework 2, because the mechanization is done

using the navigation grade measurements, whereas Framework 1 uses the CAI INS

measurements whenever they are available. It was shown that the VRW and ARW

errors are small compared to the error from the biases. This would explain why

only during short outages, when bias errors don’t have time to accumulate, that

Framework 1 shows the best performance. This idea will be tested with the design

of a third framework. This framework will attempt to reduce the VRW and ARW
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Figure 4.29: Dual INS G-Induced Outages with G Cutoff of 3G’s

errors. The goal will be a framework that always performs better than Framework 1

and Framework 2, regardless of outage times.

4.3 Dual INS Framework 3 Design

The third filter framework made corrections at the measurement level and the

position level. It has been shown that using the Pinson error model is beneficial. A

drawback of the second framework, however, is that it mechanizes off of the navigation

grade INS measurements at all times. This allows velocity and angular random walk

noise to accumulate. The Pinson error model is estimating the errors of the navigation

grade system only, so it is problematic to switch back and forth between the CAI

INS and the navigation grade INS, as Framework 1 does. If this was done, the

Pinson error model would become invalid - the INS that it is attempting to model

is now a hybrid of two systems. Instead, an additional filter is implemented which

attempts to reduce the white noise of the navigation grade measurements prior to

mechanization. This is done to reduce the velocity and angular random walk noise

from the navigation grade measurements. The third framework is simply the second

framework with this additional step. A moving average filter was used to accomplish
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Table 4.7: Comparison of All Three Dual INS Filter Frameworks
Test Case Framework 1 Framework 2 Framework 3
97% Duty Cycle 12 m 22 m 23 m
80% Duty Cycle 124 m 72 m 71 m
Time Correlated Bias Only 124 78 78 m
3g Induced Outages 205 m 111 m 113 m

this noise reduction. The difference between the CAI INS and navigation grade INS

are passed though a moving average filter. This estimates the navigation grade biases

and these biases are subtracted from the difference of the CAI INS and navigation

grade INS measurements. This leaves an estimate of the navigation grade white noise

which is removed prior to mechanization. This method is simplistic and would have

to be modified to work in real time. It was used as a proof of concept to test if a

filter framework could be implemented that worked better than Frameworks 1 and 2

regardless of outage times.

4.4 Dual INS Framework 3 Results

The third filter framework showed nearly identical performance to Framework

2. The results of the Framework 3 testing is shown in Table 4.7. It can be seen that

the third Framework is not improving performance over Framework 2. Even with the

VRW and ARW noise reduction, it is still not as accurate as Framework 1 for short

outages. To test why this was occurring, a time correlated bias only case was tested

with an 80 percent duty cycle. It can be seen from this case that the errors are nearly

identical to the normal 80 percent duty cycle case. This indicates that the bias is

strongly driving the errors, and it is not the VRW and ARW that are causing the

better performance of Framework 1 under short outages. This indicates that there is

another source of error in Framework 2 and 3 that is not encountered in Framework

1.

It was suspected that the remaining error between Frameworks 1 and 2 may

have been by caused by differences between the Pinson error model and the INS
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Table 4.8: Comparison of Dual INS Filter Frameworks in Increased Noise Test Case

Test Case Framework 1 Framework 2 Framework 3
97% Duty Cycle 63 m 412 m 395 m
80% Duty Cycle 181 m 423 m 391 m

mechanization equations. This was tested by running measurements with only a bias

through INS mechanization equations, as well as the uncorrupted measurements. The

difference in these solutions would be the error due to a bias only. The true bias was

then propagated through the Pinson error model. If the Pinson error model was

modeling the mechanization equations perfectly there would be no error between the

results of these two simulations. In the sample run conducted there was a DRMS error

of 17 meters between the mechanization equations and the Pinson error model. This

error is large enough to account for the improvements in performance of Framework

1 during short outages. What exactly caused the small difference between the Pinson

error model and the mechanization equations in this simulation is unknown. The

Pinson error model is a first order approximation of the errors of an INS. When

dealing with a navigation grade system these small errors are drowned out by other

errors. Whether these errors will be important or not in a system with predicted

performance of 5 meters per hour bears further study.

Framework 3 did not perform better than Framework 2 as expected. It was

determined that this was because the dominant error terms were the biases. To test

this concept, several simulations with increased noise were run. These simulations

increased the noise by a factor of 10 and decreased the bias driving noise strength by

a factor of 10. In these simulations, Framework 3 performed better than Framework

2. The results of these simulations are shown in Table 4.8. Interestingly, while Frame-

work 3 does now perform better than Framework 2, Framework 1 has the lowest error

by far. When the biases become much smaller relative to the white noise, as was the

case in these simulations, the filter’s estimates of the biases are no longer as accurate.

Because of this, Framework 1, which mechanizes off of the CAI INS measurements

whenever they are available, performs better. Any errors in the bias estimate only
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Table 4.9: Comparison of Two Frameworks When Integrating CAI INS with a
Tactical Grade INS, 10 MC Runs, Nominal Case

Framework DRMS Error (km)
1 27.3 km
2 24.9 km

accumulate during outages in Framework 1. This reveals a further tradeoff between

the various filter frameworks. Using the predicted CAI INS performance given in [5],

Frameworks 2 and 3 perform the best in all but very short outage cases where model-

ing error makes Framework 1 better. If, however, the bias states do not have as good

observability as they do using the predicted performance used in this simulation,

Framework 1 may be better.

4.5 Framework 1 and 2 Performance with CAI-Tactical Grade INS In-

tegration

The performance of both Frameworks integrated with a tactical grade system

was tested. Previously it was shown that the two frameworks had similar performance

for the CAI-Nav grade INS integration. The first framework is able to reduce velocity

and angular random walk errors. These errors are not corrected in Framework 2. A

simulation was run to explore if it is feasible to integrate a CAI INS with a tactical

grade INS. The VRW and ARW errors are unacceptably high in a tactical grade

system, so it is anticipated that Framework 2 will not work. Simulations were run

to test if Framework 1 could have acceptable performance with a CAI INS - tactical

grade INS integration. Table 4.5 shows the performance of the two frameworks under

the nominal condition. It can be seen that the errors are unacceptably high for both

Frameworks. Tactical INS errors are simply too high for the CAI system to fully

correct. Even with the reduction of white noise in the first framework the other

errors are too high. The first framework did perform better, as expected, but neither

performed well enough in the simulations to be used for navigation.
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4.6 GPS-CAI Integration Results

The increased accuracy of the CAI system allows for long GPS outages. Example

plots show the system errors for a CAI system with accuracy given in [5] and a

measurement frequency of 5 seconds and 1000 seconds. For comparison, a navigation

grade system was aided in the same way with the same measurements. The accuracy

of the GPS measurements had a standard deviation of 3 meters. Fig 4.30 shows east

errors for both a CAI and a Nav grade GPS aided system with a outage time of 5

seconds. Fig 4.31 shows east errors for both a CAI and a Nav grade GPS aided system

with a outage time of 1000 seconds. Fig 4.32 shows the CAI solution from Fig 4.31

enlarged. Fig 4.33 shows the filter estimation of the measurement bias. Table 4.6

shows the Monte Carlo RMS errors for various GPS measurement frequencies. It

can be seen that the CAI INS errors drift much slower than a conventional INS, as

expected. This allows the CAI INS-GPS to experience outages much longer than the

conventional INS-GPS. The most frequent GPS measurements were taken at 5 second

intervals. At this rate the CAI INS kept the error near zero and the navigation grade

INS error bounded by the standard deviation of the GPS measurements, which was 3

meters. When outage times were increased to 1000 seconds the navigation grade INS

drifted up to 2000 meters. The CAI INS-GPS kept the errors below 25 meters. This

is a significant increase in accuracy. To have this same accuracy for a conventional

INS the outage times must be ten times shorter.
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Table 4.10: CAI-GPS Monte Carlo RMS Error with Varying Measurement Avail-
ability

Measurement Interval CAI DRMS Error (m) Nav DRMS Error (m) Improvement Factor
5 sec 0.01 2.49 249
10 sec 0.01 2.93 293
20 sec 0.01 3.66 366
50 sec 0.02 5.69 284
100 sec 0.12 10.06 84
200 sec 0.45 26.9 60
500 sec 2.74 178.74 65
1000 sec 8.50 646.80 76

Figure 4.30: Comparison of East Errors for a CAI and Nav Aided GPS-INS System
with Outage Time=5 Seconds
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Figure 4.31: Comparison of East Errors for a CAI and Nav Aided GPS-INS System
with Outage Time=1000 Seconds

Figure 4.32: Comparison of East Errors for a CAI and Nav Aided GPS-INS System
with Outage Time=1000 Seconds
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Figure 4.33: GPS-INS Estimate of Navigation-Grade Bias with a CAI-GPS System
For a Single Run
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V. Conclusions and Recommendations

5.1 Conclusions

5.1.1 Dual INS Integrations. The first goal of this research was to explore

methods of integrating CAI INS with a navigation grade INS. Three different methods

were tested and compared for integrating a CAI INS with a navigation grade INS.

These methods were tested in a full six degree of freedom simulation environment using

a realistic flight trajectory. The simulation environment for the dual INS integration

created frequent periodic and g-induced outages of the CAI INS. Under short outages

Framework 1, which mechanized at the measurement level, performed best. This

was due to modeling error of the mechanization equations. The exact cause of the

modeling error was not determined but could be sampling issues or the first order

approximations of the Pinson error model. With longer outages, including the realistic

g-induced outage cases, Framework 2 performed the best. The benefits gained by using

the Pinson error model are apparent when comparing the performance of Frameworks

1 and 2. These frameworks estimate the navigation grade errors the same way. This

indicates the improvements in accuracy come from the corrections to the attitude,

velocity, and position states of the Pinson error model. These states are adjusted

with returning CAI INS measurements because of the cross correlation between the

bias states and the Pinson error model states. In the 3-g induced outage case, which

experienced outages 27% of the time, the DRMS error was 111 meters. Even though

the highly accurate CAI INS measurements were used only two thirds of the flight

there is still significant improvement over the nautical mile per hour performance of

a navigation grade system.

The third framework did not improve performance over the second framework

as hoped. This was determined to be caused by the fact that the bias errors were

the driving error sources in the simulation, and errors caused by white noise were

drowned out by these errors. This was verified by increasing the noise and decreasing

the bias driving noise strength. In these higher noise simulations Framework 3 had

better performance than Framework 2. Both frameworks, however, performed worse
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than Framework 1 in these high noise simulations, due to the decreased observability

of the bias. When the bias estimate is poor the use of the CAI INS measurements

whenever they are available is the best approach.

The simulations in this research show that integrating CAI INS with navigation

grade INS is an effective way to address the dynamic limitations of a CAI INS. The

tradespace study done shows that under a wide range of CAI INS accuracies and

dynamic performances the dual INS system still performs much better than a navi-

gation grade system alone. The CAI INS is accurate enough to estimate and correct

many of navigation grade INS errors, although not all errors are observable. These

estimates create a well calibrated navigation grade system which will give much better

performance than an un-calibrated navigation grade system. The navigation grade

INS allows the system to perform under a much higher range of dynamics than the

CAI INS could alone. It can be seen from the simulations that the navigation grade

INS is the limiting factor for performance. Increasing the accuracy of the CAI INS

over the predicted performance given in [5] does not improve navigation accuracy.

5.1.2 CAI INS Integration With Tactical Grade INS. The feasibility of

integrating a CAI INS with a tactical grade INS was tested. It was thought that the

use of the CAI INS measurements the majority of the time would allow this integration

to be possible. During outages of the CAI INS, however, the error simply grows too

quickly. Neither framework performed well enough with a tactical level system to

be useful for navigation, although other methods of integrating with a tactical grade

system could be more successful.

5.1.3 CAI INS Integration with GPS. The integration of a CAI INS system

with GPS was conducted to show the performance benefits of a CAI grade INS system

over a navigation grade system. The simulation environment created various length

GPS outages to compare the two INS systems. The smallest improvement occurred

with 200 second outages and improved performance by a factor of 60. The best

improvement occurred with outages of 20 seconds and improved performance by a
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factor of 366. Furthermore, the max error of the CAI systems experiencing 1000

second outages was still less than 10 meters. This is significant because the system is

keeping near GPS level accuracy even with significant outages. That same accuracy

with a navigation grade INS-GPS implementation requires outages to be no greater

than 10 seconds. This indicates that in an environment vulnerable to GPS outages,

using a CAI grade INS system gives significant performance improvements.

5.2 Future Work Recommendations

The simulations conducted here were done using a single flight path trajectory.

While realistic, many effects of a navigation system are trajectory dependent. Future

work could focus on testing these filter implementations in a variety of flight trajec-

tories. Also, information on the performance of CAI systems is still fairly new, as

well as the dynamic performance limitations. When these system parameters become

better known, more concrete numbers may be determined for the performance of CAI

INS systems integrated with other sensors. Another simulation that could be looked

at is the integration of a CAI INS system with an additional CAI INS system. To

address the trade space considerations, the CAI INS systems could be tuned to have

one perform high level flight accuracy and another to perform well under high dynam-

ics. Finally, flight testing of an actual CAI INS system integrated with other sensors

could be performed in the future.
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